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Abstract. Bayesian Knowledge Tracing (BKT)[1] is a user modeling
method extensively used in the area of Intelligent Tutoring Systems. In
the standard BKT implementation, there are only skill-specific parame-
ters. However, a large body of research strongly suggests that student-
specific variability in the data, when accounted for, could enhance model
accuracy [5, 6, 8]. In this work, we revisit the problem of introducing
student-specific parameters into BKT on a larger scale. We show that
student-specific parameters lead to a tangible improvement when pre-
dicting the data of unseen students, and that parameterizing students’
speed of learning is more beneficial than parameterizing a priori knowl-
edge.

Keywords: Bayesian knowledge tracing, model fitting, model selection,
student-specific model parameters

1 Introduction

Modeling student knowledge as a latent variable is a popular approach. The
latent variable is updated based on the correctness of the observed student op-
portunities to apply the skill in question. In general case, this modeling approach
is called a Hidden Markov Model. A special case of the approach is known as
Bayesian Knowledge Tracing (BKT) [1]. BKT assumes that student knowledge
is represented as a set of binary variables – one per skill (the skill is either mas-
tered by the student or not). Observations in BKT are also binary: a student
gets a problem [step] either right or wrong.

BKT has a long history of being actively used in Intelligent Tutoring Systems
(ITS) in the context of mastery learning and problem sequencing. In its standard
implementation that is still in predominant use today, BKT only has skill-specific
parameters. Starting with the original publication on BKT [1] and including
more recent works (e.g. [5]), there exist strong indicators that BKT models (often
called individualized BKT models) that somehow account for student variance
are superior to the standard BKT model.

Prior work on individualized BKT models (e.g. [1], [5]), and [8]) describes
quite different approaches to defining and learning student-specific parameters
as well as report radically different performance measures. In this paper, we
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approach the problem of introducing student-specific parameters in a more sys-
tematic manner. We build several individualized BKT models in an incremental
manner (adding student-specific parameters in batches) and examine the effect
each addition has on the model’s cross-validation performance.

We find that BKT parameters corresponding to the a priori student knowl-
edge give BKT models only a marginal cross-validation performance improve-
ment. At the same time, student-specific speed of learning parameters result in
a considerable boost in the model prediction accuracy.

2 Related Work

2.1 Bayesian Knowledge Tracing

There are four types of model parameters used in Bayesian Knowledge Tracing:
initial probability of knowing the skill a priori – p(L0) (or p-init), probability of
student’s knowledge of a skill transitioning from not known to known state after
an opportunity to apply it – p(T ) (or p-transit), probability to make a mistake
when applying a known skill – p(S) (or p-slip), and probability of correctly
applying a not-known skill – p(G) (or p-guess). Given that parameters are set for
all skills, the formulae used to update student knowledge of skills are as follows.
The initial probability of student u mastering skill k is set to the p-init parameter
for that skill Equation (1a). Depending on whether the student u applied skill
k correctly or incorrectly, the conditional probability is computed either using
Equation (1b) or Equation (1c). The conditional probability is used to update
the probability of skill mastery according to Equation (1d). To compute the
probability of student u applying the skill k correctly on an upcoming practice
opportunity one uses Equation (1e).

p(L1)ku = p(L0)k, (1a)

p(Lt+1|obs = correct)ku =
p(Lt)

k
u · (1− p(S)k)

p(Lt)ku · (1− p(S)k) + (1− p(Lt)ku) · p(G)k
, (1b)

p(Lt+1|obs = wrong)ku =
p(Lt)

k
u · p(S)k

p(Lt)ku · p(S)k + (1− p(Lt)ku) · (1− p(G)k)
, (1c)

p(Lt+1)ku = p(Lt+1|obs)ku + (1− p(Lt+1|obs)ku) · p(T )k, (1d)

p(Ct+1)ku = p(Lt)
k
u · (1− p(S)k) + (1− p(Lt)ku) · p(G)k (1e)

In the standard BKT model, we use one copy of each of the above four
parameters 〈 p(L0), p(T ), p(S), p(G) 〉 per skill. BKT models are usually fit using
the expectation maximization method (EM) [2], Conjugate Gradient Search [1],
or discretized brute-force search [7].

2.2 Student-specific Parameters in Bayesian Knowledge Tracing

In the area of building cognitive models of practice, student-specific parameters
have been used for quite some time. The logistic regression based Rasch model [3]
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(also known as 1PL IRT) and its descendant the Additive Factors Model [6] both
include a ‘student proficiency’ parameter to account for variability in student
a priori abilities. In our prior work, we found that the inclusion of student-
specific parameters has a significant positive effect on prediction accuracy and
interpretability, as well as reduces over-fitting [4].

Prior work introducing student-specific parameters to BKT is limited. Cor-
bett and Anderson, in the original BKT paper [1], discussed fitting all four BKT
parameters for students (e.g. p(T )u) as well as skills (e.g. p(T )k). Namely, data
of all students practicing skill k would be used to fit four BKT parameters for
that skill, and all data of student u would be used to fit four BKT parameters for
that student. The student and skill parameters would then be combined using a
special function to yield a value (here p(T )ku) to be used for updating the prob-
ability of skill mastery. The individualized BKT model led to better correlation
between actual and expected accuracy across students when compared to the
same correlation for the non-individualized BKT model. However, accuracy of
predicting student test scores (after a period of working with a tutoring system)
did not improve tangibly.

Pardos and Heffernan [5] individualized the initial probability of mastery
p(L0)k by assigning according to a set of heuristics: randomly, by selecting from
two pre-set values based on first student response correctness, by using overall
percent correct. The ‘prior per-student’ models fit better than traditional BKT
on a significant fraction of the problem sets authors considered.

Lee and Brunskill [8] investigated individualizing all four BKT parameters.
However, in contrast to [1], the student-specific parameters were fit differently.
Instead of fitting per skill and per-student BKT parameters to be combined later,
they only fit per-student parameters for each student (assuming there is one skill
all students have to learn). Lee and Brunskill did not discuss goodness of fit of
their individualized models. Their focus was whether the individualized model,
when used in an intelligent tutoring system, would schedule fewer or more prac-
tice opportunities than the traditional BKT skill-specific model (or population
model as authors referred to it). The results showed that a considerable fraction
of students, as judged by individualized model, would have received too few or
too many practice opportunities (although no confidence intervals were given).

Although the [potential] benefits of individualized BKT models are visible,
the results are unclear about the ideal configuration of student-specific param-
eters (4 per student [1], 1 heuristic value per student [5], 4 per student [8]),
are limited in the evidence for improved mode prediction and are hard to op-
erationalize for the purpose of implementing in an ITS. The original work on
BKT [1] pointed out that operationalization of the discussed individualized BKT
model could be problematic. Work by Pardos and Heffernan [5] showed that their
prior-per-student BKT does not always win over traditional BKT. Lee and Brun-
skill [8] made a practically important derivation that using individualized model
parameters could save time for stronger students and could allocate more time
for struggling ones. However, this derivation assumed that individualized BKT
models predict student data better which was not tested.
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Table 1: BKT parameters in matrix form
(a) Priors (Π)

known p(L0)
unknown 1-p(L0)

(b) Transitions (A)

to known to unknown
from known 1 0
from unknown p(T ) 1 − p(T )

(c) Observations (B)

right wrong
known 1-p(S) p(S)
unknown p(G) 1-p(G)

3 Methods

Our goal is to unify and extend prior work on individualized BKT models. We
construct four variants of individualized BKT models varying the number of
student-specific parameters. and we rank the constructed models with respect
to predictive accuracy on unseen data.

3.1 Bayesian Knowledge Tracing with Student-specific Parameters

Instead of a traditional Expectation Maximization (EM) method for learning
BKT parameters, we base our method on the so-called optimization techniques
approach described in [2] for the following reasons. First, EM does not directly
optimize a likelihood of the student observations given BKT parameters (a stan-
dard metric for HMM). As a result, the EM algorithm could make adjustments to
BKT parameters that would actually worsen the fit. Second, using the gradient-
based optimization techniques allows us to introduce student-specific parame-
ters to BKT without expanding the structure of the underlying HMM (cf. [5]).
Keeping the structure of the underlying HMM unchanged permits us to lower
the computational cost of fitting.

Table 1 shows BKT parameters defined in matrix format, as they are nor-
mally represented in HMM. A priori probability of mastery p(L0) belongs in the
Priors matrix Π = {πi} in an HMM, i ∈ [1, N ] (N is the number of hidden
states, in our case two), learning probability p(T ) is in the Transitions matrix
A = {aij}, i, j ∈ [1, N ] (note that there is no forgetting – transition from known
to unknown is zero), probabilities of slipping and guessing belong to the Ob-
servations matrix B = {bj(m)}, j ∈ [1, N ], m ∈ [1,M ] (M is the number of
observations, in our case two). These matrices follow two constraints: all of the
elements should be non-negative, and the priors vector and the rows of transi-
tions and observations matrices should sum to one.

To successfully implement our BKT models, we need to solve two problems.
First, the evaluation problem: given BKT parameters λ = {Π,A,B} and a se-
quence of observations (practice attempts) O = {ot}, t ∈ [1, T ], what is the
probability that the observations are generated given BKT model, or formally
p{O|λ}. Second, the learning problem: given BKT parameters λ and a sequence
of observations O, how should λ be adjusted to maximize p{O|λ}.

The objective function we use in our method is negative log likelihood, or J =
−log(Ltot), where Ltot is the sum of all likelihoods p{O|λ} for all student-skill
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practice sequences in our data. We will define our search for better λ parameters
of the BKT as gradient search (cf. Equation 2a, where η is the search step
size). Here, gradients with respect to our matrices from Table 1 are defined in
terms of the so-called forward variables α (cf. Equation 2b and 2c) and backward
variables β (cf. Equation 2d and 2e). Gradients with respect to BKT parameters
are given in Equation 2f, 2g, and 2h. For detailed discussion of forward and
backward variables as well as derivations of the gradients see [2].

λnew = λold − η
[
∂J

∂λ

]
λ=λold

(2a)

α1(j) = πjbj(o1), j ∈ [1, N ] (2b)

αt+1(j) = bj(ot+1)

N∑
i=1

αt(i)aij , j ∈ [1, N ], t ∈ [1, T ] (2c)

βT (i) = 1, i ∈ [1, N ] (2d)

βt(i) =

N∑
j=1

βt+1(j)aijbj(ot+1), i ∈ [1, N ], t ∈ [1, T − 1] (2e)

∂J

∂πi
= − 1

Ltot
β1(i)bi(o1) (2f)

∂J

∂aij
= − 1

Ltot

T∑
t=2

βt(j)bj(ot)αt−1(i) (2g)

∂J

∂bj(ot)
= − 1

Ltot

αt(j)βt(j)

bj(ot)
(2h)

(2i)

We have defined how to compute gradients with respect to traditional BKT
parameters. To introduce student-specific parameters we split the skill-specific
BKT parameters into two components the following way. Using w to substitute
for each of the corresponding skill-specific BKT parameters (πi, aij , or bj(m)),
we define it in terms of both student- and skill-specific parameters as shown
in Equation 3a. Here, wk is the skill-specific component of the parameter, wu

is the student-specific component, l(p) = log[p/(1 − p)] is a logit function, and
σ(x) = 1/(1 + e−x) is a sigmoid function (inverse of logit). Not that in summing
logistic functions in Equation 3b to combine student and skill parameters we are
incorporating the compensatory logic behind the IRT and AFM family of models
[3, 6]. Updating parameter gradients is possible using the chain rule (illustrated
in Equation 3b for the student-specific component of the parameter w), since
both the sigmoid and logit functions are differentiable.
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w = σ(l(wk) + l(wu)) (3a)

∂J

∂wu
=
∂J

∂w

∂w

∂wu
(3b)

The importance of having all the gradients’ derivations in Equations 2f to 2h
is two-fold. First of all, freely available specialized HMM toolkits usually target
general purpose Bayesian inference algorithms (most often EM) that are more
computationally intensive. Second, without computing the gradients explicitly,
a general-purpose optimization packages (part of tools like Matlab and R) would
have to make computationally inefficient approximations.

3.2 Data

We used the datasets from the KDD Cup 2010 Educational Datamining Chal-
lenge (http://pslcdatashop.web.cmu.edu/KDDCup). The data was donated by
Carnegie Learning Inc., a publisher of math curricula and a producer of intelli-
gent tutoring systems for middle school and high school. There are two datasets,
Algebra I, and Bridge to Algebra, both collected in 2008-2009 school year. Each
dataset is a log of students’ step-by-step performance (correctness and timing)
during problem solving and was tagged with two alternative skill models.

The Algebra I dataset has 8,918,054 rows covering practice attempts of
3,310 students. 4,419,705 rows of the Algebra I dataset are tagged with 515
distinct skills from skill model 1 (used for problem sequencing in an ITS) and
6,442,137 rows are tagged with 541 distinct skills from an alternative skill model
2. The Bridge to Algebra dataset contains data of 6,043 students comprised of
20,012,498 rows, 11,239,188 and 12,350,449 of which are tagged with skills from
skill model 1 (807 distinct skills) and model 2 (933 distinct skills) respectively.
It is worth underlining the sheer size of each of the datasets. Except for the
prior-per-student model reported in [5], none of the BKT models were ever tried
on the dataset of this size, and prior-per-student has been individualized by us-
ing simple heuristics including random, correctness of first response defines the
choice of one of two pre-set priors, and overall per-student percent correct.

3.3 Fitting Procedures

We created a tool capable of fitting and cross-validating standard and individu-
alized BKT models using the derivations discussed in Section 3.1. To facilitate
efficiency, it was implemented in C/C++. The tool is capable of fitting classical
BKT models using the EM method, as well as fitting classical and individualized
BKT models using the gradient descent method (using linear step size search)
and a set of versions of conjugate gradient descent method.

We tested four different model variants on four different dataset-skill model
combinations. We chose gradient descent method, since, although conjugate gra-
dient methods are expected to yield better fits, the actual advantage was mini-
mal to non-existent. When fitting individualized models, the coordinate descent
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method was used: two blocks of parameters – skill-specific and student-specific –
by interleaving fits if one block at a time. The BKT model variants we fit were:

1. Standard BKT model,
2. Individualized BKT with student-specific p(L0),
3. Individualized BKT with student-specific p(T ),
4. Individualized BKT with student-specific p(L0) and p(T ).

While constructing the models, we constrained model values for all guess and
slip parameters to prevent the occurrence of a phenomenon called model degen-
eracy (cf. [7]). All of the models were cross-validated using 10 randomly assigned
user-stratified folds. For each of the cross-validation results we computed root
mean squared error (RMSE) and accuracy (number of correctly predicted stu-
dent successes and failures).

Our tool is implemented to handle large datasets in an efficient manner. For
example, 10-fold cross-validation of the simplest standard BKT model on Alge-
bra I dataset with skill model 1 takes under 2.5 minutes, for the most complex
model 4 in the list above on the larger Bridge to Algebra dataset and skill model
2 the running time is under 70 minutes.

4 Results

Table 2 is a summary of cross-validation results for the standard BKT and the
three individualized BKT models. For each dataset - skill model pair, in addition
to RMSE and Accuracy, the contrasts to other BKT model variants are given
in terms of fewer/more correct predictions. The correctness is computed using
model’s prediction (rounded toward 0 or 1 using 0.5 as threshold) and the actual
correctness of student step in the data.

Across both datasets and both skill models, student-specific a priori proba-
bility of mastery (p(L0)) in model 2 has no effect on model performance. On the
other hand, introduction of student specific speed of learning (p(T )) in model
3 results in a consistent and more pronounced advantage over models 1 and 2.
Moreover, the improvement in model accuracy resulting from adding individu-
alized p(L0) on top of individualized p(T ) (going from model 3 to model 4) is
even smaller than when adding individualized p(L0) to the standard BKT model
(going from model 1 to model 2), despite the fact that model 3 has half as many
student specific parameters as model 4. Given that, model 3 with individualized
p(T ) can be considered superior to the standard BKT and other individualized
models.

Bear in mind that results in Table 2 are for student-stratified validation.
Namely, individualized BKT models are making predictions on data from unseen
students unable to use their learnt student-specific parameters. Considering a
potential operationalization of our findings, this shows a valuable property of
model 3 (and model 4): producing cleaner skill-specific parameters (read, devoid
of student-specific noise/variability). In an incremental ITS design cycle it would
mean that, even if the core system only has a standard BKT implemented, it is
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Table 2: Model cross-validation statistics for datasets Algebra I (A) and Bridge
to Algebra (B) and skill models 1 and 2. Subscripts next to RMSE and Accuracy
denote respective rank. The correct predictions difference tables show how many
more correct predictions a model in the row makes over the model in the column
header (a negative number means a model makes fewer correct predictions).

(a) Dataset A, skill model 1

Correct Correct predictions difference
model RMSE Accuracy rows model 1 model 2 model 3 model 4

1 0.362734 0.8275503 3,657,527 0 348 -6232 -5972
2 0.362653 0.8274714 3,657,179 -348 0 -6580 -6320
3 0.361161 0.8289601 3,663,759 6232 6580 0 260
4 0.361192 0.8289012 3,663,499 5972 6320 -260 0

(b) Dataset A, skill model 2

Correct Correct predictions difference
model RMSE Accuracy rows model 1 model 2 model 3 model 4

1 0.341874 0.849143 5,470,279 0 783 -6390 -6594
2 0.341803 0.849024 5,469,496 -783 0 -7173 -7377
3 0.340652 0.850132 5,476,669 6390 7173 0 -204
4 0.340601 0.850161 5,476,873 6594 7377 204 0

(c) Dataset B, skill model 1

Correct Correct predictions difference
model RMSE Accuracy rows model 1 model 2 model 3 model 4

1 0.362944 0.822614 9,245,493 0 -6638 -78249 -76805
2 0.362553 0.823203 9,252,131 6638 0 -71611 -70167
3 0.358511 0.829571 9,323,742 78249 71611 0 1444
4 0.358542 0.829452 9,322,298 76805 70167 -1444 0

(d) Dataset B, skill model 2

Correct Correct predictions difference
model RMSE Accuracy rows model 1 model 2 model 3 model 4

1 0.358954 0.827574 10,220,891 0 -7122 -78339 -77993
2 0.358573 0.828153 10,228,013 7122 0 -71217 -70871
3 0.354842 0.833922 10,299,230 78339 71217 0 346
4 0.354821 0.833891 10,298,884 77993 70871 -346 0

possible to improve overall student model accuracy by incrementally updating
the skill-specific weights once a new group of students finishes a course or a
course unit.
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5 Conclusions

In this paper we presented an approach to building individualized Bayesian
Knowledge Tracing models that are capable of accounting for student differ-
ences with respect to initial mastery probabilities and skill learning probabili-
ties. Our approach does not require the underlying Hidden Markov Model to be
changed. It is based on gradients of prior (Π), transition (A), and observation
(B) parameter matrices and can be used together with a wide range of existing
gradient descent algorithms. Our own implementation includes a conjugate gra-
dient method with a variety of kernel formulas for computing the direction of
parameter updates.

As we were able to show, our implementation of individualized BKT models
is capable of tangibly improving the accuracy of predicting the success of student
work in an intelligent tutoring system. An interesting finding was that adding
student-specific probability of learning (pLearn) is more beneficial for the model
accuracy than adding student-specific probability of initial mastery (pInit). In
an alternative realm of models of learning practice that are based on logistic
regression (for example, Item Response Theory), the analog of initial probability
of mastery is student proficiency, which is thought to be critical for the model
performance. Could it be in those models that individualizing learning rate is
better than individualizing proficiency.

It is out intent to continue developing the instrumental framework for fitting
standard and individualized BKT models as well as to persist with its empirical
evaluation on real-world and synthetic datasets. As part of this work we intend
to include item-stratified and unstratified cross-validation to the currently imple-
mented student-stratified and to extend individualization features to currently
not covered observation matrix parameters – pSlip and pGuess.
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