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Absrtract Elo is a rating schema used for tracking player level in individual
and, sometimes, team sports, most notably — in chess. Also, it has found
use in the area of tracking learner proficiency. Similar to the 1PL IRT
(Rasch), Elo rating schema could be extended to serve the most demanding
needs of learner skill tracking. Elo’s advantage is that it has fewer parameters.
However, the computational efficiency side of the search for the best-
fitting values of these parameters is rarely discussed. In this paper, we
are focusing on questions of implementing Elo and a gradient-based
approach to find optimal values of its parameters. Also, we compare
several variants of Elo to learning modeling approaches like Bayesian
Knowledge Tracing. Our results show that the use of analytical gradients
results in computational and, sometimes, statistical fit improvements on
small and large datasets alike.

Keywords: Modeling Student Learning, Model Comparison, Elo rating
schema.

1 Introduction

Computer-assisted testing and computer-guided learning rely on computational
models of student knowledge and learning to produce personalized value for
test-takers and learners. Models like 1PL IRT [11] and Log-Linear Test Model
(LLTM) [21] were used and elaborated upon by the measurement community to
compile test forms and compute student test scores. The field of computer-guided
learning, most notably, intelligent tutoring systems, long relied on Bayesian
Knowledge Tracing (BKT) [2] model for operational student-modeling or an
approach in ASSISTments where three corrects in a row earn the student skill
mastery [4]. Among the analytical models of learning that were used extensively,
we could mention the Additive Factors Model (AFM) [1].

Elo recently rediscovered by learning analytics and educational data mining
communities and several research investigations were published. While Elo is
different from statistical models traditionally used in assessment and learning
(often referred to as rating schema, not a model), it has highly desirable properties
for these fields. First, Elo is designed to completely sidestep cold start problem
and doesn’t require substantial tuning (fitting) — known Elo variants all have
under a dozen parameters. Second, Elo relies on local, often, asynchronous
updates and that resonates well with computational issues assessment and learning
models often have to combat with. Third, Elo is intuitively explainable — wrong
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answer results in a decrement of student’s ability ratings and vice versa, plus,
the more unexpected the outcome, the more the update to the rating value is.
One of the shortcomings of Elo is that parameter fitting is largely done by
hand-picking or grid search [13]. Our attempts to find traces of attempts to
address Elo’s parameter optimization resulted in no reference from the fields
of assessment or learning. The only publication we found was from the field of
biology where Elo was used for explaining behaviors of primates [5]. In this paper,
we attempt to address the fitting of Elo parameters when applied to educational
data and to work out analytical gradients for two forms of Elo rating schema. We
then fit Elo on several sets of publicly available learning data and show that the
use of analytical gradients follows the results when gradients are computationally
approximated. Also, often, a computational improvement is observed.

2 Prior Work and Uses of Elo

Elo rating schema has long been used to rate chess players. In addition, Elo is also
used for rating players in multiplayer competition in several video games [22],
association football, American football, basketball [15], Major League Baseball,
tennis [6], Scrabble, and other games. A Bayesian approach, based on Elo called
TrueSkill™ was developed by Herbrich and colleagues [7] to address performance
in team sports. In biology, Elo has found use to explain the formation of dominance
hierarchies of primates [5].

In education, there are several cases of successful use of Elo both as a
theoretical and operational model. For example, members of Peldnek’s research
group published several works where variants of Elo rating schema were used
in connection to learning Geography, specifically to track student recall of the
shapes of maps of the Northern European countries [13]. One of the most at-
scale operational uses of Elo rating schema in education is in the system Math
Garden [8] that is widely used in a K-12 setting in the Netherlands. An Elo-based
system of student ratings was used by Ivanovo State Power University, Russia
to track student progress as they complete the courses overall, as well as the
intermediate and partial exams within the courses [9], [24]. This approach called
Developing Individual Creating Thinking (RITM in Russian transliteration) was
implemented in 1992 and is still in use today.

3 Elo Rating Schema

Elo is a rating schema named after its inventor Arpad Elo [3]. In chess, where
Elo found initial use, the modeled events are chess matches and the variables
are opponent 1 ability and opponent 2 ability. After each match, the ratings of
opponents’ abilities are updated based on the outcome (a win of either opponent
or a draw). In the fields of measurement and learning, an event is the student’s
opportunity to answer a question item correctly. The student is opponent 1, and
the item is opponent 2. Sometimes, a set of skills relevant to the question item
are used to collectively represent opponent 2. When applied to tracking learner



Elo, I Love You Won’t You Tell Me Your K 3

proficiency a standard version of Elo is often compared to a Rasch model that
used in psychometrics. We will start by describing the Rasch model first and
then focus on Elo.

3.1 Rasch Model

Rasch model [11], also known as 1PL IRT, captures test-taker performance with
the help of two classes of variables: unidimensional abilities of test-takers, and
unidimensional difficulties of test items. Both abilities and difficulties are thought
of as stationary values that do not change over the time of assessment. Refer
to Equation 1 and 2 for the formulation of the Rasch model. Here, 6; — is the
ability of student i, 3; — is the difficulty of item j, X;; — is i*" student’s response
to item j, p;; — is the estimate of the probability of student answering the item
correctly, and m;; — is the log-odds value of that probability.

1
pij = Pr(Xi; = 1) = o(myy) = 0~ gy

mij = Gl - ﬁj (2>

3.2 Student-Item Elo

A simple formulation of Elo capturing students and items is given in Equation 3.
It is related to the Rasch model’s formulation in Equation 1. In Elo, s; — is the
current logit rating of student’s unidimensional ability and b; — is the current
logit rating of item’s unidimensional difficulty. We are only defining Elo’s m;,
since the probabilistic form is the same as shown in Equation 1.

mi; = 8; — bj (3)

If we are to draw comparisons between Rasch’s 6; and 3; and Elo’s s; and b;,
the former would be stationary values and the latter would be functions of time
since, in Elo, s; and b; are incrementally updated as new data arrives. One may
hypothesize that say, s; could be asymptotically approaching 6;. However, unlike
0;, the distribution of s; has not been theoretically described and s; constantly
changes which complicates such theoretical description. The same is true for b;.
Additionally, in the Rasch model, 6; and §; are parameters, while s; and b; in
Elo are not. In some literature, for example [14], Elo-tracked student abilities
and item difficulties are written as 6; and 8;. However, in order to separate the
meanings, we would use different notation.

As mentioned before, tracked Elo values are updated as new data points are
observed. Refer to Equations 4-5 for the updating rules. Here, K is a sensitivity
parameter controlling the magnitude of the update. Thus, the Elo variant as in
Equation 3 has one parameter K. We will refer to this Elo version as E1.
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(4)

0, if this is the first time we see data of student ¢
S; =
! si + K - (X;; — pij), otherwise

(5)

b 0, if this is the first time we see data of item j
b — K - (Xi; — pij), otherwise

We could modify the previously defined Student-Item Elo model by defining
two sensitivity parameters: ; K for updating student abilities, and ; K for updating
item difficulties. Here, the ; nd ; mean that the corresponding K values belong
to student updates and item updates respectively. The corresponding changes
are shown in Equations 6 and 7. This version of Elo we will call E2.

si = si +iK - (Xij — pij) (6)
bj = bj — ;K - (Xij = pij) (7)

4 Gradients of Elo Parameters

4.1 Preliminary Definitions

We use O = {o0:}, to denote observations, where o; € {0,1} is the student’s
response to an item at some time ¢. Here, ¢ € [1,T] is the time slice and it
indexes the data of all students answering all items sorted by time. 0 and 1 denote
incorrect and correct student responses respectively. Vector of Elo parameters
is denoted as A. An element of the vector is \,,, where m € [1,M] and A, €
(—00, 400).

We will be using maximum-likelihood estimation in our further work. For
optimization, we are going to rely on negative total log-likelihood of data given
parameters and will try to minimize that value. Total negative log-likelihood
denoted as J is defined in Equation 8. In simple terms, the total likelihood of
the data is the product of the probabilities of the actual observations given the
parameters of Elo. Negative log-likelihood is the negative sum of the logarithms
of the probabilities of actual observations. Here, p; — is the probability (expected
value) of the observation being the correct response at time ¢ and is equivalent to
pij in Equation 1. Also, m; — a logit form of the expected performance — would
be equivalent to m;; from Equation 3.

J = —In(Lioy) = (0iln(pe) + (1 — 0)In(1 — py)) (8)

Mq

t=1

4.2 General Partial Derivative

Partial derivative of J with respect to A, assumes the form shown in Equation 9.
Depending on how m; is defined in a particular variant of Elo, the dm;/0\,
would change. As a simplification, we would write o — o(m;) or o — p; as §; —
the prediction error at time ¢ and rewrite Equation 9 as shown in Equation 10.
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4.3 Detailed Partial Derivatives

The Elo variant E1 accounts for unidimensional student ability s; and unidimensional
item difficulty b;. In order to bridge the notation defining Elo in Equations 4-7

to indexing data by time slice ¢, we define functions g;(t) and g;(¢) that, for a
given data point ¢ produce the respective student and item indexes ¢ and j.

Let’s now define how the data points of the same student or item are counted.
Function ¢;(t) and function ¢;(t) produce the count of data points before time
t belonging to, respectively, student ¢ and item j. Let’s also define indexing
functions r;(t) and r;(t) that, for a data point ¢, gives the time slice of the data
point when a student or an item were seen last. Thus, for example, r;(¢) < ¢ is the
prior data point corresponding to student g;(¢). Refer to the first eight columns
of Table 1 for an example that covers all of the indexes we talked about thus
far. There, t, g;(t), and g;(t) — are given; the rest — follow from the definitions.

Given the above definitions, for Elo variant E1 (simplest student-item Elo)
the expected logit-scale value of student’s performance is given in Equation 11a.
Note that the expected value is defined by using prior estimates of student ability
s; and item difficulty b;. The initial values of student ability and item difficulty
are given in Equation 11c and Equation 11d for the top cases when the respective
opportunity counts are 0’s.

The rules of updating s; and b; upon processing data point ¢ in the bottom
cases of Equation 1lc and Equation 11d, where the respective ¢, counts are
non-zero. Computation of the the gradient of the negative log-likelihood of the
data given sensitivity K is in Equation 1le. An example of updating rating and
gradient values for Student-Item Single Sensitivity Elo based on is in Table 1 in
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1 = gi(t), index of student for row ¢
j = g;(t), index of item for row ¢
r:(l) =1i(gi(1)), time student i was seen prior to time [
r;(1) =7;(g;(1)), time item j was seenprior to time [
¢i = ¢i(gi(1)), count of times student 4 seen prior to time [

c; = ¢j(g;(1)), count of times item j seen prior to time [

0 ife; =0
S; =
si +K -6 ifc; >0
0 ifC]'ZO
bj = .
bj — K -6 ife; >0
a7 T t
o =20 > (e >0) 0,0+ (e > 0) 6, )]

t=1 =1

(11a)
(11b)

(11¢)

(11d)

(11e)

columns 9 through 19. If we are using Elo variant E2, and, instead of a single
sensitivity K for updating tracking values for both students and items, we were
to use separate sensitivities — ;K for students and ;K for items, the gradients

would be as shown in Equations 12a—12d.

0 ifCiIO
S; =

s; +iK-6: ifc; >0
b — 0 ife; =0
P b=, K-8 ife; >0

t

0T S 603 (e > 0) - 6,0)]

t=1 =1

S
=

t

QJ = *Zéz . Z [(¢; >0)-6r,)]

=1

X
=

5 Computational Validation

(12a)

(12b)

(12¢)

(12d)

In order to give the analytical gradients of the described versions of the Elo
rating schema approach, we have made comparative runs of Elo schema fitting
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Table 1. An example of updating ratings and computing gradient of Student-Item-
Single Sensitivity Elo where K=0.4. The total log-likelihood (the sum of J;’s) J =
5.768, and the gradient of the K is 0.777.

S S~~~

s == 07
top » '« O O & « S1 S2 S3 b1 ba b3 Pt Jt TK’E
0 0.000 0.000 0.000 0.000 0.000 0.000
101 1 0 0 0 0]-0.200 0.200 0.500 0.693 0.000
201 2 1 0 1 0/-0.380 0.180 0.450 0.598 -0.225
31 210101 0.220 -0.020 0.450 0.798 0.275
40 2 211 3 2 0.016 0.384 0.510 0.713 0.051
501 3 2 0 2 0/-0.543 0.162 0.406 0.521 -0.386
6 1 1 3 3 1 5 5/-0.275 -0.105 0.331 1.106 1.180
7031020 3 -0.202 0.182 0.505 0.703 0.025
81 2 3 2 2 4 6 0.204 -0.293 0.530 0.634 -0.142

procedures. We relied on R statistical package and its base function optim
that implements the BFGS algorithm [12]. Instead of the BFGS algorithm, we
could have chosen gradient descent or conjugate gradient descent or any other
method that would rely on log-likelihood and gradient. Instead of focusing on
the algorithm, we picked an algorithm and controlled for that choice.

For all versions of the Elo, we implemented objective functions computing
negative log-likelihood from the data given the parameter(s) and the gradient of
the parameters. Since optim function relies on natively compiled code written
in C/C++, we implemented the objective function (negative log-likelihood) and
gradient computations in C/C++ as well. Thus, the relative speeds of the core
BFGS algorithm and the functions are comparable.

BFGS algorithm implemented in optim function could run with approximated
gradients relying on the objective function alone or with the supplied gradient
function. For each test case to be discussed below, we recorded the resulting
negative log-likelihood, fit metrics, time, and the number of iterations it took
the parameter fitting to complete. In all runs, the sensitivity parameter(s) K
were seeded to 0.4.

To better position the results within the relevant literature, we compared
the performance of the Elo models in question to Bayesian Knowledge Tracing
(BKT) model. Since all of the data we will use comes from the Carnegie Learning
Cognitive Tutor that relies on BKT, the choice is natural. To fit BKT models we
used a package hmm-scalable [23]| written in C/C++ that is known to be efficient
in dealing with large datasets of learning data.

6 Data

We used four datasets. Two are made available by LearnLab’s LearnSphere
repository [10] and two available as part of KDD Cup 2010 [19]. The first
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LearnSphere dataset D1 — Geometry Area (1996-97) — consists of 5,104 records
belonging to 59 students working through a Geometry Area unit of Carnegie
Learning Cognitive Tutor. Students there were interacting with 139 distinct
items (problem steps).

The second LearnSphere dataset D2 [18] has 128,493 rows belonging to 123
students working with a Geometry Area unit of Carnegie Learning Cognitive
Tutor. Here, students were interacting with 16,485 distinct items (problem steps).
The third dataset D3 [16] has Carnegie Learning’s Cognitive Tutor data collected
in the 2008-2009 school year in Algebra I classrooms. This dataset had 8,918,055
transactions of 3,310 students working with 206,596 items (problems). Finally,
the fourth dataset D4 [17] has Carnegie Learning’s Cognitive Tutor data collected
in the 2008-2009 school year in Bridge to Algebra classrooms. This dataset had
20,012,499 transactions of 6,043 students working with 61,848 items (problems).

One could see that we used problem steps as items in datasets D1 and D2,
but problems as items in datasets D3 and D4. There is a much larger ratio
of unique problem steps to data points in the latter case and that is why we
resorted to using problems. Even after the adjustment, the resulting item per
datapoint ratios are rather different — 36.72, 7.79, 43.17, and 323.58 for datasets
D1, D2, D3, and D4 respectively. A different problem step to datapoint ratio
is due to a greater variety of content units in datasets D3 and D4 that cover
the whole year, while datasets D1 and D2 only cover one section of content.

7 Results

Table 2 is a summary of the comparative runs of fitting the two versions of the
Elo rating schema and one regular BKT model to each dataset. The table is
ordered by the dataset (D1, D2, D3, and D4), the Elo version (E1 and E2),
and BKT model comes after Elo models for every dataset.

The first thing to note is that both the negative log-likelihood and the reached
parameter values are quite close across all 8 pairwise comparisons. The same
is especially true for statistical fitness metrics — accuracy and RMSE — the
difference is always in the third or fourth decimal digit. The second thing we
can note is that the use of the analytical gradient results in longer run time for
datasets D1 and D2, but shorter time run for the datasets D3 and D4. This
could be due to the effect of the size — larger datasets do not incur as much
relative computational overhead. When dividing the overall run time by the
number of iterations! the relative speed of the analytical gradients is consistently
higher.

If we look at single vs. double sensitivity Elo, we notice that, in terms of the
negative log-likelihood, a 2-sensitivity model has a slight edge. However, in terms
of fit metrics — accuracy and RMSE — the differences aren’t so pronounced. In
terms of time, not surprisingly, the 2-sensitivity Elo takes longer to fit.

! Since optim function does not output iterations explicitly, we have substituted
iterations count with the sum of the number of times objective function and gradient
were executed — both required a pass over the dataset.
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Table 2. Comprative performace of approximated and analytical gradients when fitting
the two Elo variants and BKT.

Model|Data|Grad.-s|Neg. LL| RMSE| Acc. Param.(s)|Iter.| Tm., s|Tm./It.
E1 | D1 |approx. 2639]0.4139|0.7453 0.3583| 19| 0.022| 0.0011
E1 | D1 |analyt. 2640]0.4140/0.7467 0.3701| 60| 0.035| 0.0006
E2 | D1 |approx. 2634|0.4137|0.7443|0.2619, 0.4427| 25| 0.029| 0.0012
E2 | D1 |analyt. 2634|0.4138]0.7437|0.2603, 0.4717| 76| 0.047| 0.0006

BKT | D1 yes 2537(0.4034(0.7663 - - 0.099 -
E1 | D2 |approx.| 27930|0.2417]0.9299 1.0431] 38| 0.423] 0.0111
E1 | D2 |analyt.| 27957|0.2420{0.9298 0.9381| 63| 0.687| 0.0109
E2 | D2 |approx.| 27269|0.2412({0.9283|0.4128, 1.5169| 50| 0.738| 0.0148
E2 | D2 |analyt.| 27270{0.2411{0.9283|0.4188, 1.5333| 137| 1.339| 0.0098

BKT | D2 yes 29921 0.2500(0.9291 - - 0.504 -
El1 | D3 |approx.|3447761|0.3422|0.8538 0.1282| 45| 22.780| 0.5062
E1 | D3 |analyt.|3450255|0.3422]0.8538 0.0986| 49| 17.404| 0.3552
E2 | D3 |approx.|3437226|0.3417(0.8539|0.1965, 0.0340| 72| 40.827| 0.5670
E2 | D3 |analyt.|3440697|0.3421|0.8540(0.1601, 0.0789| 152| 60.354| 0.3971

BKT | D3 yes [3412619]0.3389/0.8572 - -| 46.237 -
E1 | D4 |approx.|7108867|0.3263|0.8653 0.1212| 62| 53.871| 0.8689
E1 | D4 |analyt.|7108948|0.3263|0.8653 0.1171| 47| 38.136| 0.8114
E2 | D4 |approx.|7101767|0.3261{0.8654|0.1697, 0.0734| 77| 98.708| 1.2819
E2 | D4 |analyt.|7111965|0.3264|0.8652(0.1071, 0.1267| 68| 65.542| 0.9638

BKT | D4 yes [6906909|0.3178|0.8722 - -1110.052 -

Together with Elo performance, for every dataset, we included the performance

of a fit BKT model. Across the four datasets, it is not possible to determine a
clear winner. In some cases, BKT has the edge in terms of shorter running time
but loses slightly on the accuracy. We were especially happy that Elo holds its
ground well on the large datasets D3 and D4.

8 Conclusions

In this paper, we have discussed an approach to finding optimal parameters
for Elo rating schema using analytically derived gradients. To the best of our
knowledge, this is the first attempt to derive analytical gradients for Elo and fit
it as a machine learning model. We were primarily interested in the [relative]
speed of the search for the best-fitting parameter and how close are the achieved
log-likelihoods of the analytical and approximated gradient approaches. When

comparing approximated and analytical gradients, it is expected to see differences
in convergence and even statistical fit, the latter being of slightly elevated importance.

The result we obtained should not be taken as a hard conclusion. In order to
draw inferences, one should run series of cross-validations instead of a single fit
of the modal to the whole dataset.

While we were fitting Elo parameters, we controlled for the kernel search
algorithm — BFGS. Admittedly, different search algorithms (conjugate gradient
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descent, Brent, L-BFGS, to name a few) could result in slightly better or worse
performance. Although our brief experimentation with conjugate gradient descent
did not show any difference in terms of run time and performance.

When it comes to a particular variant of Elo rating schema, we only considered
student-item Elo with one or two constant sensitivity of the update (K). There
exist far more complex and expressive variants of Elo (see, for example, [20] and
[14]) where student tracked values are hierarchical and skill ratings are tracked
instead of item ratings. Also, instead of the single sensitivity, authors sometimes
use a form of an uncertainty function that diminishes the magnitude of the
update to the rating as more data is used to re-compute it. Starting with the
derivations in this paper, the analytical gradient approach we presented could
be used to formalize those Elo variants as well.

A worked-out analytical gradient for a variant of Elo could be useful in
several ways. One might think of an extension where each student receives an
individualized weight (say, a multiplier) to go with the sensitivity parameter.
Having worked out an analytical gradient, one might regularise these individual
weights treating them as a random factor. Of course, individualized weights
would have to change as a function of time just as student abilities and item
difficulties do in Elo.

Also, Elo functionality could be employed for infusing the self-adjusting
nature of tracked ratings onto other models. For example, an iBKT model [23] is
not operationalizable to this day since student-level parameters need to be re-fit
frequently using a lot of data. Treating student-level features as ratings updated
using Elo-like procedure could make such Elo-infused iBKT operationalizable by
definition.
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