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ABSTRACT 
Generalizability of models of student learning is a highly 
desirable feature. As new students interact with educational 
systems, highly predictive models, tuned to increasing amounts of 
data from previous learners, presumably allow such systems to 
provide a more individualized, optimal learning path, give better 
feedback, and provide a more effective learning experience. 
However, any large student/user population will be heterogeneous 
and likely consist of discernable sub-populations for which 
specific models of learning may be appropriate. Student sub-
populations may differ with respect to cognitive factors, the level 
and quality of instruction, and many other environmental and non-
cognitive factors.  

The era of both “big data” and widely deployed educational 
software, including Carnegie Learning’s Cognitive Tutor (CLCT) 
intelligent tutoring system, presents opportunities to analyze 
increasingly large volumes of data collected during learners’ 
interactions with educational systems. These data cover a broad 
spectrum of learners, allowing researchers to investigate the 
structure of an increasingly representative student population. In 
this work, we investigate discovering student sub-populations 
from “big data.” Using a year’s worth of data from CLCT, we test 
the hypothesis that commonly used stratifications of student sub-
populations (e.g., school location, socio-demographic factors) 
offer ways to meaningfully partition learners. We discover that, 
rather than finding distinct subpopulations that should be treated 
differently, a particular sub-population of learners provides 
especially “high quality” data and that models learned from this 
sub-population outperform all other models even when predicting 
student learning for the sub-population on which other models 
were trained. In this way, “better data beat big data.”  
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1. INTRODUCTION 
Generalizability is an important property of any model of student 
learning developed by researchers and practitioners in educational 
data mining, learning analytics, and cognitive modeling. As such, 
investigators generally aim to iteratively refine models of student 
learning based on data as it is acquired; experimental iteration 

informs future versions of computer-based educational systems so 
that such systems can adapt to (and better serve) larger 
populations of learners. 

Discovering the appropriate grain size (e.g., learning models at the 
group-, school-, or class-level versus individualized, student-level 
models) to achieve such generalizability is a topic of recent 
interest in the literature. The student population (i.e., the user base 
of an educational system) is likely to be heterogeneous, and 
important aspects of its structure can potentially be identified. 
Student sub-populations may have particular characteristics and 
profiles that can be stratified with respect to demographics, 
learning capabilities, instructional quality, among other factors. 
Less clear are ways in which such stratifications can be useful for 
determining sub-populations over which better models of student 
learning might be learned. 

A body of prior work goes beyond building models of 
undifferentiated populations, modeling individual student 
differences [4, 8] and also modeling groups of students (e.g., 
classes and schools) [5, 7]. Other work builds models of student 
behavior and compares sub-populations defined by school setting 
(e.g., urban, suburban, or rural) [1]. Most efforts to model 
individual student differences or to stratify student sub-
populations consider relatively small datasets, with an exception 
of work by Pardos and Heffernan that uses the largest open access 
dataset on student learning currently available – the KDD Cup 
2010 dataset.1 

On an industrial scale, adapting at the student- and/or group-level 
provides an opportunity to deliver an optimized learning 
experience to a large user base, for example, the hundreds of 
thousands of users of Carnegie Learning’s Cognitive Tutor® 
(CLCT) intelligent tutoring system (ITS) [6]. Using CLCT data, 
we focus on the discovery of student sub-populations over which 
parameters used to track student mastery of knowledge 
components (KCs) or skills can be learned (i.e., “tuned”) to better 
deliver instructional content to different sub-populations. Little (if 
any) prior research considers what data to include in an a priori 
school profile that might determine appropriate sub-populations 
(i.e., groups of schools) for such tuning and similarly for a 
posteriori profiles that include student interaction data after CLCT 
has been used for a substantive period of time.  

In this work, we explore the possibility of utilizing information 
about a particular school (e.g., demographic and socioeconomic 
indicators) and about its students (e.g., prior performance) to 
effectively structure a large selection of schools into distinctive 
groups to determine if and how groups of schools might benefit 

                                                                    
1 KDD Cup 2010 http://pslcdatashop.web.cmu.edu/KDDCup/ 

 

 



 

 

from a specific parameter tuning of the CLCT. We set out to 
discover generalizable sub-populations of schools, but rather we 
find that a subset of schools provides “high quality” data, models 
of which effectively generalize to all schools in our sample and 
outperform (in terms of prediction accuracy on held out data) 
models learned on other subsets and larger samples of data. In this 
sense: better data beat big data. 

2. CARNEGIE LEARNING COGNITIVE 
TUTOR 
CLCT is an ITS for mathematics that uses cognitive modeling to 
structure a target domain (e.g., algebra) into knowledge 
components (KCs). CLCT adapts instruction based on its 
assessment of which KCs a learner has or has not mastered at any 
given moment. CLCT provides feedback as to the correctness of 
their actions on problem-solving steps and also provides context-
sensitive hints upon request. Curricula, like algebra, are divided 
into units of instruction; units are comprised of topical sections, 
and sections consist of individual problems that are broken up into 
steps. Problem-solving steps are tagged with one or more KCs.  

As students solve problems, CLCT updates its assessment of 
students’ KC mastery using a probabilistic framework called 
Bayesian Knowledge Tracing (BKT) [3]. BKT is a Hidden 
Markov Model with two hidden states, representing whether a 
particular KC is un-mastered or mastered. Observations of student 
performance on opportunities to practice a KC are binary: a 
student either solves a problem step correctly or not (due to error 
or because of a hint request). While students might go through 
dozens of attempts to get a particular step correct, traditionally, 
only students’ first attempts are considered for updating KC 
mastery estimates. 

BKT uses probabilistic parameters to capture the nature of 
mastering a skill. These parameters are the probability of knowing 
the skill a priori, the probability of learning the skill at the next 
practice attempt (i.e., transitioning from the unknown state to the 
known state), the probability of guessing correctly while in the 
un-mastered state, and the probability of slipping (i.e., answering 
incorrectly despite being in the mastered state). In the commercial 
deployment of CLCT, BKT parameters are set by hand by 
cognitive scientists and also go through revisions based on data. 

3. DATA 
We consider a large set of CLCT student usage data, collected in 
2010. Although the tutor was used in several thousand schools 
across the United States, we do not collect detailed interactions 
for all schools, so our initial data covered 144,080 registered 
student accounts in 899 schools with close to 473 million records 
overall, including activity unrelated to problem-solving (e.g., 
login) as well as solving practice problems. Unfortunately, not all 
registered students used the tutor or attempted more than one unit 
of the curriculum. After trimming down the data we arrived at a 
dataset that included 342 schools, 72,082 active students, and 88.6 
million problem-solving actions. 

We queried the National Center for Education Statistics (NCES)2 
for school metadata that included: the number of students enrolled 
(as a proxy of school’s relative size), student-teacher ratio, 
number of students eligible to receive free or reduced price lunch 
(as a proxy for socioeconomic status), and the school’s location 
(metropolitan area): rural, suburban, or urban. Although some of 
                                                                    
2 National Center for Education Statistics http://nces.ed.gov 

the school metadata from NCES were from the year 2011, we 
assume that year-to-year fluctuations are negligible. We matched 
NCES data and our data and arrived at a set of 232 schools, 
narrowing our selection to 55,012 students with substantive usage 
(i.e., attempting more than one unit of instruction) and 67.3 
million problem-solving transactions.  

In addition to school metadata, we computed school-level student 
performance statistics from our logs. For each school, we have 
computed: the average number of distinct units students were 
attempting, the standard error of the mean number of units 
attempted, number of distinct units students attempted. We have 
also retained a binary vector of units attempted by schools’ 
students for grouping schools based on the similarity of attempted 
units. 

To further characterize schools, we ran a mixed effects logistic 
regression model on the data (see Eq. (1) and Eq. (2)). Here, θi 
represents the ability of student i (a student intercept), and βj is a 
problem complexity intercept. For each skill k relevant to problem 
j, δk is general skill easiness (i.e., a skill intercept), and γk 
represents skill k’s learning rate; tik captures student i’s number of 
prior attempts at skill k. 

mij =θi +β j + δk + tikγ k( )
k
∑  

Eq. (1) 

Pr(Yij =1|θ,β,δ,γ ) =
1

1+ e−mij  Eq. (2) 

In this regression model, we treat the student- and problem-
intercepts as random factors. From the regression coefficients, we 
calculated the following values to describe, per school: average 
student intercept (denotes relative prior preparation of students), 
average skill intercept (to capture each school’s general level of 
skill difficulties on top of student preparation), and average skill 
slope (to denote the relative speed of learning for students). Thus, 
overall we have collected, for each school, four a priori metadata 
descriptive factors and seven a posteriori student performance 
descriptive factors. 

4. APPROACH 
We seek to determine if, based on one or more descriptive factors 
described above, it is possible to effectively separate schools in 
our dataset into groups such that schools within groups are more 
similar to each other in terms of learning than to schools in other 
groups. We propose to use the accuracy of student modeling as a 
measure of similarity. That is, if a student model fit to a particular 
group of schools predicts performance of students in these schools 
better than models fit to the data of other groups of schools and 
this is true for all group models, then the school grouping in 
question effectively separates schools into distinguishable sub-
populations. 

 
Figure 1. An example criterion of a good split into sub-groups  
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An illustration of an effective separation of schools into groups is 
shown in Figure 1. In this graph using idealized data, all schools 
are split into three groups (or populations). Based on the data from 
each of the groups we built three models. Each of the three 
models are used to predict held out data from each of the three 
groups of schools giving us 3*3=9 predictions. Prediction of held-
out data for group of schools #1 is shown in the leftmost column 
where the accuracy of each of the three models’ predictions are 
shown as dots with serifs denoting standard errors of the mean. 
Here, we see that model built on group #1 performs better on held 
out data than models built on the data from groups #2 and #3. 
Since the range of the serif denoting standard error of the mean 
for model #1 does not overlap with serif ranges for models #2 and 
#3, the advantage of model #1 is deemed “significant.” Columns 2 
and 3 show the same phenomenon: a model built on the data from 
the respective subgroup outperforms models built on other 
subgroups.  

4.1 Dividing Schools 
We have considered all eleven descriptive factors to guide 
groupings of schools: 1) school locale, 2) percentage of students 
eligible for free and reduced priced lunch, 3) student-teacher ratio, 
4) enrollment, 5) average student units attempted, 6) standard 
error of student units attempted, 7) number of unique units 
students attempted, 8) school unit coverage group (based on 
similarity of binary vectors of distinct units attempted by students 
in particular school)3, 9) average student intercept from the 
logistic regression model (a proxy of average student preparation 
in the school), 10) average skill intercept for the school from the 
logistic regression, and 11) average logistic regression skill slope 
for the school. The factors are grouped into three batches: school 
metadata factors that are known a priori, student usage statistics 
factors that can be computed from surface logs of student activity, 
and student model factors that require detailed data to be derived. 

Among all factors, school locale and the school unit coverage 
group are categorical factors. We binned the remaining nine 
continuous factors into three value ranges – low, medium, and 
high – so that the number of students in all three is roughly the 
same. In addition to splitting schools using just one factor, we 
have computed school splits based on multiple factors. Namely, 
all factors from all groups4, only school metadata factors, only 
student usage factors, only student model factors, and all a 
posteriori student factors (student usage and model factors). The 
multi-factor groupings were produced with the help of R package 
cluster using Goward distances metric and Ward’s hierarchical 
clustering algorithm via function hclust with the number of 
clusters set to 3 for simplicity. 

4.2 Cross-Validating School Groups 
Since the number of the schools varied across single-factor and 
multi-factor splits, we sampled 30 schools from each group where 
20 schools were used for training a group model and 10 schools 
were set aside as held out test data. Rather than relying on single-
point estimations of model accuracy, we repeated sampling 20 
times and obtained the means and the standard errors of prediction 
accuracies. Thus, for each grouping we selected 20 
                                                                    
3 The grouping was done with the help of R package cluster 

using Euclidean distances and Ward’s hierarchical clustering 
algorithm via function hclust with k=3. 

4 School locale factor was excluded since using it defaulted the 
clustering to be identical to the metro area factor itself. 

(samples)*3(groups)*2(fit and test)=120 data sets; within each of 
the 20 samples fit and test data for a particular group of schools 
did not overlap, while across samples they could. 

For each of the 20 samples we fit three group models. Each of the 
three models is used thrice to predict three held-out data sets for 
each of the groups (9 predictions overall). Fitting models and 
producing prediction accuracies was done with the help of a BKT 
utility built for use with large datasets [8]. 
We stipulate that, in order for a grouping of schools to be 
considered producing distinct groups, for every group, the in-
group prediction should be significantly better than out-group 
prediction (cf. Figure 1). 

5. RESULTS 
First, we consider several school metadata factors, knowable a 
priori (prior to any student usage of CLCT). Figure 2 is a group 
split graph for school enrollment. As we can see, models built on 
groups of low and middle ranges of enrollment are not discernable 
from each other across all prediction tasks. The model built on 
high enrollment schools is visibly worse even when predicting 
held out data of high enrollment schools. 

 
Figure 2. Group separation by school enrollment  

 
Figure 3. Group separation by the ratio of students eligible for 

free and reduced price lunch  
Figure 3 is a group separation graph for the ratio of students 
eligible for free and reduced price lunch. Again, we see that this 
factor is not separating schools into reliably discernable groups. 
Models built on schools with a high proportion of students eligible 
for free and reduced price lunch are visibly worse across all 
populations, while models of low and medium groups are not 
discernable, again across all populations. 
Neither school metadata factors separately nor a grouping based 
on a clustering solution of these metadata factors produce a 
desirable split. Instead, we see model accuracies lined up in 
identical fashion: one particular model is a slightly better 
predictor universally; a second model is slightly worse, and the 
remaining model is worse than the second. 

However, for 3 out of 7 remaining individual factors and one 
multi-factor case (all factors but metro area), models built on one 
group of schools are consistently and significantly better than 
other models in at least 2 prediction tasks. See, for example, 

0.
71

0.
73

0.
75

0.
77

Popu la tion be ing pred ic ted

A
cc
ur
ac

y

Low Medium H igh

L
M

H L
M

H L M

H
0.
70

0.
72

0.
74

0.
76

Popu la tion be ing pred ic ted

A
cc
ur
ac

y

Low Medium H igh

L

M

H

L
M

H

L M

H



 

 

Figure 4. Here, schools where students finish a high number of 
units on average (more than 9.2 units) produce a model that 
outperforms another model in two out of three comparisons and 
ties in third.  

 
Figure 4. Group separation by average student units 

attempted 
We find a similar pattern for average student intercept (a proxy of 
average student preparation), where the model built on a group of 
better-prepared students wins in two comparisons and ties in one. 
The third factor with one-model-trumps-all is the average skill 
slope (a proxy of speed of learning), where the winning model 
actually is built on the group of schools where the average skill 
slope is in the medium range. When cross-correlated, only the 
correlation of average units attempted and average student 
intercept is relatively high and significant (r=0.56, p<0.001). 

6. DISCUSSION 
We set out to discover subsets of schools for which models of 
practice could be built for sub-populations to optimize the CLCT 
learning experience for students in that sub-population. Instead, 
we find that particular sub-populations of schools can be used to 
learn parameters that perform best over the entire population. In 
essence, we have identified a set of schools for which particular 
aspects of their interaction with the CLCT provide high-quality 
(e.g., less “noisy”) data for such model building. 

While this substantial subset may still count as “big” data, we 
disregard a large number of students to arrive at this generalizable 
model, and the characteristics along which the group of schools 
from which these students are drawn are not obvious a priori. 
While much focus is placed on the revolutionary potential of big 
data applications in education, careful consideration and attention 
must be paid to the quality of such data for particular purposes 
and application contexts. 

We find that the sub-populations that yield a universally better 
model tend to contain students who are better prepared and 
students who attempt more CLCT units.. However, with respect to 
average skill learning rates, the best model contains many students 
in the “middle” group. At this point we hypothesize that students 
that should be considered for inclusion in learning a generalizable 
model are not just better students but those that yield a substantial 
data footprint in terms of curriculum coverage. Students who 
should likely be excluded are those who only cover a fragment of 
units, insufficient to provide for a “good” model. 

Several caveats could hinder how strongly the phenomenon of 
“better data” vs. “big data” manifests itself. One is that CLCT 
allows instructors to deploy “custom” curricula; different schools 
sometimes use different content units and, as a result, practice 
different skills. Consequently, when validating the model on the 
held out data where a particular unit was not practiced, we used 

default modeling parameters that could potentially lead to lower 
accuracy. Together with known issues with fitting BKT models 
(e.g., local maxima and non-identifiability [2]), this might have 
led to the inter-group differences being underestimated and the 
effect of “one group model takes all” – lessened. 

Second, we cannot judge, for example, whether our 2010 dataset 
constitutes a representative sample of all US schools with respect 
to the school metadata variables we considered. However, we 
estimated whether our selected subset of 232 schools maintains 
the same distribution of the school locale (i.e., whether schools 
are rural, urban, and suburban) as that over 729 school of our 
original 899 schools for which we have appropriate data to make 
the comparison. The split between rural, suburban, and urban 
schools in the larger sample of 729 schools are 29%, 33%, and 
38%, respectively. Our smaller sample of 232 schools breakdown 
as 29%, 25%, and 46%, respectively. While the percentage of the 
rural schools is the same, the percentage of urban schools 
significantly grew, and the ratio of suburban schools declined. 
While this may introduce bias, it is unclear whether such bias, 
given the relatively large sample overall, would have a substantive 
impact on the generalizability of our results. 
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